These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Validation of ultrasound contrast destruction imaging for flow quantification.
    Author: Lucidarme O, Kono Y, Corbeil J, Choi SH, Mattrey RF.
    Journal: Ultrasound Med Biol; 2003 Dec; 29(12):1697-704. PubMed ID: 14698337.
    Abstract:
    Our purpose was to validate in vitro a kinetic flow model based on microbubble signal decay curve. Using a 3.5 MHz transducer and phase-inversion (1.8 MHz central transmit frequency), a renal dialysis cartridge oriented vertically was imaged in the transverse plane as 1:1000 dilution of AF0150 was infused at 50, 100, 200, 300 and 400 mL/min. Ten gray-scale images were acquired at each infusion rate using 2.5, 5 and 10 frames/s at 100%, 40%, 15% or 1% of maximum transmit power. Video-intensity measured on each 10 images was fit to a kinetic model using Sigma Plot that yielded microbubble concentration, velocity and destruction per frame. These were correlated with the experimental conditions. At 100% power, video-intensity on the first frame (microbubble concentration at equilibrium) was similar for all flow and frame rates. The model fit the experimental data for all flows at 10 frames/s and for flows lower than 400 and 100 mL/min at 5 frames/s and 2.5 frames/s, respectively. The calculated flow was similar to the experimental flow rates, regardless of technique (r(2) = 0.98). Microbubble fraction destroyed per frame was similar for all flow and frame rates and increased linearly with transmit power (r(2) > 0.98). These results suggest that using appropriate power and frame rate for a given flow rate, estimates of fractional blood volume, flow and destruction fraction can be calculated from the decay curve using 10 frames that can be acquired in 1 to 4 s.
    [Abstract] [Full Text] [Related] [New Search]