These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensinogen gene polymorphisms: relationship to blood pressure response to antihypertensive treatment. Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial.
    Author: Kurland L, Liljedahl U, Karlsson J, Kahan T, Malmqvist K, Melhus H, Syvänen AC, Lind L.
    Journal: Am J Hypertens; 2004 Jan; 17(1):8-13. PubMed ID: 14700505.
    Abstract:
    BACKGROUND: The renin-angiotensin-aldosterone system (RAAS) is important for the development of hypertension, and several antihypertensive drugs target this system. Our aim was to determine whether specific single nucleotide polymorphisms (SNPs) in RAAS genes were related to the blood pressure (BP) lowering effect of antihypertensive treatment. METHODS: Patients with mild to moderate primary hypertension and left ventricular hypertrophy were randomized in a double-blind fashion to treatment with either the angiotensin II type 1 receptor antagonist irbesartan (n = 48) or the beta(1)-adrenergic receptor blocker atenolol (n = 49) as monotherapy. A microarray-based minisequencing system was used to genotype 30 SNPs in seven genes in the RAAS. These polymorphisms were related to the antihypertensive response after 12 weeks treatment. RESULTS: The BP reductions were similar in the atenolol and the irbesartan groups. Presence of the angiotensinogen (AGT) -6A allele or the AGT 235T allele were both associated with the most pronounced systolic BP response to atenolol treatment (P =.001 when -6 AA+AG was compared with GG and P =.008 for presence of the 235T variant compared with 235 MM). CONCLUSIONS: We found that SNPs in the angiotensinogen gene were associated with the BP lowering response to atenolol. This study is limited by a relatively small sample size, and the results should therefore be viewed as preliminary. Despite this limitation, these results illustrate the potential of using SNP genotyping as a pharmacogenetic tool in antihypertensive treatment.
    [Abstract] [Full Text] [Related] [New Search]