These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Author: Fux C, Mitta B, Kramer BP, Fussenegger M. Journal: Nucleic Acids Res; 2004 Jan 02; 32(1):e1. PubMed ID: 14704358. Abstract: CCAAT/enhancer-binding proteins (C/EBPs) as well as bone morphogenic proteins (BMPs) play essential roles in mammalian cell differentiation in shaping adipogenic and osteoblastic lineages in particular. Recent evidence suggested that adipocytes and osteoblasts share a common mesenchymal precursor cell phenotype. Yet, the molecular details underlying the decision of adipocyte versus osteoblast differentiation as well as the involvement of C/EBPs and BMPs remains elusive. We have engineered C2C12 cells for dual-regulated expression of human C/EBP-alpha and BMP-2 to enable independent transcription control of both differentiation factors using clinically licensed antibiotics of the streptogramin (pristinamycin) and tetracycline (tetracycline) classes. Differential as well as coordinated expression of C/EBP-alpha and BMP-2 revealed that (i) C/EBP-alpha may differentiate C2C12 myoblasts into adipocytes as well as osteoblasts, (ii) BMP-2 prevents myotube differentiation, (iii) is incompetent in differentiating C2C12 into osteoblasts and (iv) even decreases C/EBP-alpha's osteoblast-specific differentiation potential but (v) cooperates with C/EBP-alpha on adipocyte differentiation, (vi) osteoblast formation occurs at low C/EBP-alpha levels while adipocyte-specific differentiation requires maximum C/EBP-alpha expression and that (vii) BMP-2 may bias the C/EBP-alpha-mediated adipocyte versus osteoblast differentiation switch towards fat cell formation. Dual-regulated expression technology enabled precise insight into combinatorial effects of two key differentiation factors involved in adipocyte/osteoblast lineage control which could be implemented in rational reprogramming of multipotent cells into desired cell phenotypes tailored for gene therapy and tissue engineering.[Abstract] [Full Text] [Related] [New Search]