These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP.
    Author: Kun E, Kirsten E, Mendeleyev J, Ordahl CP.
    Journal: Biochemistry; 2004 Jan 13; 43(1):210-6. PubMed ID: 14705947.
    Abstract:
    The enzymatic mechanism of poly(ADP-ribose) polymerase (PARP-1) has been analyzed in two in vitro systems: (a) in solution and (b) when the acceptor histones were attached to a solid surface. In system (a), it was established that the coenzymatic function of dsDNAs was sequence-independent. However, it is apparent from the calculated specificity constants that the AT homopolymer is by far the most effective coenzyme and randomly damaged DNA is the poorest. Rates of auto(poly-ADP-ribosylation) with dsDNAs as coenzymes were nearly linear for 20 min, in contrast to rates with dcDNA, which showed product [(ADPR)n] inhibition. An allosteric activation of auto(poly-ADP-ribosylation) by physiologic cellular components, Mg2+, Ca2+, and polyamines, was demonstrated, with spermine as the most powerful activator. On a molar basis, histones H(1) and H(3) were the most effective PARP-1 activators, and their action was abolished by acetylation of lysine end groups. It was shown in system (b) that oligo(ADP-ribosyl) transfer to histone H(1) is 1% of that of auto(poly-ADP-ribosylation) of PARP-1, and this trans(ADP-ribosylation) is selectively regulated by putrescine (activator). Physiologic cellular concentrations of ATP inhibit PARP-1 auto(poly-ADP-ribosylation) but less so the transfer of oligo(ADP-ribose) to histones, indicating that PARP-1 auto(ADP-ribosylation) activity is dormant in bioenergetically intact cells, allowing only trans(ADP-ribosylation) to take place. The inhibitory mechanism of ATP on PARP-1 consists of a noncompetitive interaction with the NAD site and competition with the coenzymic DNA binding site. A novel regulation of PARP-1 activity and its chromatin-related functions by cellular bioenergetics is proposed that occurs in functional cells not exposed to catastrophic DNA damage.
    [Abstract] [Full Text] [Related] [New Search]