These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The hypothalamic-pituitary-adrenal and glucose responses to daily repeated immobilisation stress in rats: individual differences.
    Author: Márquez C, Nadal R, Armario A.
    Journal: Neuroscience; 2004; 123(3):601-12. PubMed ID: 14706773.
    Abstract:
    It is accepted that there are important individual differences in the vulnerability to stress-induced pathologies, most of them associated to the hypothalamic-pituitary and sympatho-medullo-adrenal axes, the two prototypical stress-responsive systems. However, there are few studies specifically aimed at characterising individual differences in the physiological response to daily repeated stress in rats. In the present work, male rats were submitted to repeated immobilisation (IMO) stress (1 h daily for 13 days) and several samples were taken at specific days and time points. Animals only subjected to blood sampling procedure served as controls. Daily adrenocorticotropic-hormone (ACTH), corticosterone and glucose responses to immobilisation (that included the post-immobilisation period) progressively declined over the days. In addition, repeated immobilisation resulted in decreased relative thymus weight, increased relative adrenal weight, elevated corticotropin-releasing factor (CRF) mRNA levels in the hypothalamic paraventricular nucleus (PVN), and down-regulation of glucocorticoid receptor gene transcription in hippocampus CA1. However, only CRF mRNA levels in the paraventricular nucleus correlated with the ACTH (on day 1) and corticosterone responses (from day 4-13) to immobilisation. When the animals were classified in three groups on the basis of their plasma ACTH levels immediately after the first immobilisation, individual differences in the ACTH response progressively disappeared on successive exposures to the stressor, whereas those in corticosterone and glucose were more sustained. The present results suggest that there are individual differences in the physiological response to stress that tend to be reduced rather than accentuated by repeated exposure to the stressor. Nevertheless, this buffering effect of repeated stress was dependent on the particular variable studied.
    [Abstract] [Full Text] [Related] [New Search]