These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potential role of IGF-I in hypoxia tolerance using a rat hypoxic-ischemic model: activation of hypoxia-inducible factor 1alpha. Author: Wang X, Deng J, Boyle DW, Zhong J, Lee WH. Journal: Pediatr Res; 2004 Mar; 55(3):385-94. PubMed ID: 14711902. Abstract: Hypoxia preconditioning and subsequent tolerance to hypoxia-ischemia damage is a well-known phenomenon and has significant implications in clinical medicine. In this investigation, we tested the hypothesis that the transcriptional activation of IGF-I is one of the underlying mechanisms for hypoxia-induced neuroprotection. In a rodent model of hypoxia-ischemia, hypoxia preconditioning improved neuronal survival as demonstrated by decreased hypoxia-ischemia-induced neuronal apoptosis. To study the role of IGF-I in hypoxia tolerance, we used in situ hybridization to examine IGF-I mRNA distribution on adjacent tissue sections. In cerebral cortex and hippocampus, hypoxia preconditioning resulted in an increase in neuronal IGF-I mRNA levels with or without hypoxia-ischemia. To test its direct effects, we added IGF-I to primary neuronal culture under varying oxygen concentrations. As oxygen concentration decreased, neuronal survival also decreased, which could be reversed by IGF-I, especially at the lowest oxygen concentration. Interestingly, IGF-I treatment resulted in an activation of hypoxia-inducible factor 1alpha (HIF-1alpha), a master transcription factor for hypoxia-induced metabolic adaptation. To evaluate whether IGF-I transcriptional activation correlates with HIF-1alpha activity, we studied the time course of HIF-1alpha DNA binding activity in the same rat model of hypoxia-ischemia. After hypoxia-ischemia, there was an increase in HIF-1alpha DNA binding activity in cortical tissues, with the highest increase around 24 h. Like IGF-I mRNA levels, hypoxia preconditioning increased HIF-1alpha DNA binding activity alone or with subsequent hypoxia ischemia. Overall, our results suggest that IGF-I transcriptional activation is one of the metabolic adaptive responses to hypoxia, which is likely mediated by a direct activation of HIF-1alpha.[Abstract] [Full Text] [Related] [New Search]