These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation.
    Author: Fukushima J, Akao T, Takeichi N, Kurkin S, Kaneko CR, Fukushima K.
    Journal: J Neurophysiol; 2004 Jun; 91(6):2809-25. PubMed ID: 14711976.
    Abstract:
    The primate frontal cortex contains two areas related to smooth-pursuit: the frontal eye fields (FEFs) and supplementary eye fields (SEFs). To distinguish the specific role of the SEFs in pursuit, we examined discharge of a total of 89 pursuit-related neurons that showed consistent modulation when head-stabilized Japanese monkeys pursued a spot moving sinusoidally in fronto-parallel planes and/or in depth and with or without passive whole body rotation. During smooth-pursuit at different frequencies, 43% of the neurons tested (17/40) exhibited discharge amplitude of modulation linearly correlated with eye velocity. During cancellation of the vestibulo-ocular reflex and/or chair rotation in complete darkness, the majority of neurons tested (91% = 30/33) responded. However, only 17% of the responding neurons (4/30) were modulated in proportion to gaze (eye-in-space) velocity during pursuit-vestibular interactions. When the monkeys fixated a stationary spot, 20% of neurons tested (7/34) responded to motion of a second spot. Among the neurons tested for both smooth-pursuit and vergence tracking (n = 56), 27% (15/56) discharged during both, 62% (35/56) responded during smooth-pursuit only, and 11% (6/56) during vergence tracking only. Phase shifts (relative to stimulus velocity) of responding neurons during pursuit in frontal and depth planes and during chair rotation remained virtually constant (< or =1 Hz). These results, together with the robust vestibular-related discharge of most SEF neurons, show that the discharge of the majority of SEF pursuit-related neurons is quite distinct from that of caudal FEF neurons in identical task conditions, suggesting that the two areas are involved in different aspects of pursuit-vestibular interactions including predictive pursuit.
    [Abstract] [Full Text] [Related] [New Search]