These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Speciation of heavy metals in recent sediments of three coastal ecosystems in the Gulf of Cádiz, southwest Iberian Peninsula. Author: Sáenz V, Blasco J, Gómez-Parra A. Journal: Environ Toxicol Chem; 2003 Dec; 22(12):2833-9. PubMed ID: 14713021. Abstract: A live-step sequential extraction technique was used to determine the partitioning of Cr, Mn, Fe, Cu, Zn, Cd, and Pb among the operative sedimentary phases (exchangeable ions, carbonates, manganese and iron oxides, sulfides and organic matter. and residual minerals) in coastal sediment from three locations in the southwest Iberian Peninsula. Two sites are located close to industrial areas, the salt marshes of the Odiel River and Bay of Cádiz, and one in a nonindustrial area, the Barbate River salt marshes. The Odiel River salt marshes also receive the drainage from mining activities in the Huelva region. In the sediments from the Bay of Cádiz and Barbate River salt marshes, Cr, Cu, Fe, and Zn were extracted from the residual fraction at percentages higher than 60%. In the sediments from the Odiel River salt marshes, concentrations of all the metals, except Cu. Zn, and Cd, exceeded 60% in the residual fraction as well. In the sediments from the Bay of Cádiz and Barbate River salt marshes, the main bioavailable metals were Mn and Cd; in those from the Odiel River salt marshes, the main bioavailable metals were Zn and Cd, respectively. The environmental risk was determined by employing the environmental risk factor (ERF), defined as ERF = (CSQV - Ci/CSQV), where Ci is the heavy metal concentration in the first four fractions and CSQV is concentration sediment quality value (the highest concentration with no associated biological effect). Our results showed that the sediments from the Cádiz Bay and Barbate River salt marshes do not constitute any environmental risk under the current natural conditions. In contrast, in the Odiel River salt marshes, Cu, Zn, and Pb yielded ERFs of less than zero at several sampling stations and, consequently, pose a potential threat for the organisms in the area. This is a consequence of the high levels of metals in the area derived from the mining activity (pyrite) and industrial activities and the association of these heavy metals with more labile fractions of the sediments.[Abstract] [Full Text] [Related] [New Search]