These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Predominant K-ras codon 12 G --> A transition in chemically induced lung neoplasms in B6C3F1 mice.
    Author: Ton TV, Hong HH, Anna CH, Dunnick JK, Devereux TR, Sills RC, Kim Y.
    Journal: Toxicol Pathol; 2004; 32(1):16-21. PubMed ID: 14713543.
    Abstract:
    Based on long-term toxicity and carcinogenicity studies in B6C3F1 mice conducted by the National Toxicology Program, 2,2-Bis(bromomethyl)-1,3-propanediol (BMP) and tetranitromethane (TNM) have been identified as carcinogens. Following 2 yr of exposure to 312, 625, or 1,250 ppm BMP in feed, or exposure to 0.5 or 2 ppm TNM by inhalation, increased incidences of lung neoplasms were observed in B6C3F1 mice at all exposure concentrations compared to unexposed mice. The present study characterizes genetic alterations in the K-ras protooncogene in BMP- and TNM-induced lung neoplasms, respectively, and compares the findings to spontaneous lung neoplasms from corresponding control mice. The frequencies of the K-ras mutations were 57% (29/51) in BMP-induced lung neoplasms compared to 15% (3/20) in lung neoplasms from dosed feed control mice, and 54% (14/26) in TNM-induced lung neoplasms compared to 60% (3/5) in lung neoplasms from inhalation control mice. G --> A transitions at the second base of the K-ras codon 12 (GGT --> GAT) were the most frequent pattern of K-ras mutations identified in BMP-induced (20/29) and TNM-induced lung neoplasms (13/14), which differed from the mutational patterns identified in the lung neoplasms from unexposed control mice. These results indicate that mutations in the K-ras gene are involved in B6C3F1 lung carcinogenesis following BMP- and TNM-exposure, and the high frequency and specificity of the ras mutation profile in lung neoplasms (G --> A transition) may be due to in vivo genotoxicity by the parent compounds or their metabolites.
    [Abstract] [Full Text] [Related] [New Search]