These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional recovery of locus coeruleus noradrenergic neurons after DSP-4 lesion: effects on dopamine levels and neuroleptic induced-parkinsonian symptoms in rats.
    Author: Srinivasan J, Schmidt WJ.
    Journal: J Neural Transm (Vienna); 2004 Jan; 111(1):13-26. PubMed ID: 14714212.
    Abstract:
    Noradrenaline has been shown to control dopamine turnover and release in rat brain. Noradrenergic lesion with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) decreases dopamine release in the striatum and enhances catalepsy in experimental models of Parkinson's disease. However, in due course, sprouting of remaining noradrenergic axons, to compensate for the decreased noradrenaline is said to occur in specific brain regions. Though this is to some extent understood, the longstanding effects of noradrenergic lesion on dopaminergic neurons of the basal ganglia and in Parkinsonian behavior is not known. Here the question is addressed, whether locus coeruleus lesion with DSP-4 in rats alters dopamine concentration of the basal ganglia and influences Parkinsonian behavior in a long term (6 months). Parkinsonian behavior was assessed by catalepsy and activity cage after challenging with subthreshold dose of haloperidol (0.2 mg/kg), on 7, 30, 90, 120 and 180 days after DSP-4 lesion. The concentrations of noradrenaline and dopamine and its metabolites were estimated by HPLC. 6 months after DSP-4 lesion, increased concentration of noradrenaline was found in prefrontal cortex and hippocampus. Other regions remain unaffected. The concentration of dopamine remained unchanged. However, dopamine turnover appeared to be increased in prefrontal cortex and reduced in striatum and nucleus accumbens. Catalepsy and hypoactivity were observed in DSP-4 lesioned animals after haloperidol challenge on 7th, 30th and 60th day. Though dopamine turnover was reduced after 6 months in the striatum, haloperidol-induced catalepsy was not observed after 60 days. These results indicate a gradual functional recovery, perhaps hyperinnervation of noradrenergic neurons after DSP-4 treatment and the reversal of its effects on dopaminergic neurons and on Parkinsonian symptoms.
    [Abstract] [Full Text] [Related] [New Search]