These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Considerations on the history dependence of muscle contraction. Author: Rassier DE, Herzog W. Journal: J Appl Physiol (1985); 2004 Feb; 96(2):419-27. PubMed ID: 14715673. Abstract: When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted proposal to explain both, force depression after shortening and force enhancement after stretch, is a nonuniform behavior of sarcomeres that develops during and after length changes. This hypothesis is based on the idea of instability of sarcomere lengths on the descending limb of the force-length relationship. However, recent evidence suggests that skeletal muscles may be stable over the entire range of active force production, including the descending limb of the force-length relationship. The purpose of this review was to critically evaluate hypotheses aimed at explaining the history dependence of force production and to provide some novel insight into the possible mechanisms underlying these phenomena. It is concluded that the sarcomere nonuniformity hypothesis cannot always explain the total force enhancement observed after stretch and likely does not cause all of the force depression after shortening. There is evidence that force depression after shortening is associated with a reduction in the proportion of attached cross bridges, which, in turn, might be related to a stress-induced inhibition of cross-bridge attachment in the myofilament overlap zone. Furthermore, we suggest that force enhancement is not associated with instability of sarcomeres on the descending limb of the force-length relationship and that force enhancement has an active and a passive component. Force depression after shortening and force enhancement after stretch are likely to have different origins.[Abstract] [Full Text] [Related] [New Search]