These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber.
    Author: Chang JC, Ghorishi SB.
    Journal: Environ Sci Technol; 2003 Dec 15; 37(24):5763-6. PubMed ID: 14717192.
    Abstract:
    Experimental data from a laboratory-scale wet scrubber simulator confirmed that oxidized mercury, Hg2+, can be reduced by aqueous S(IV) (sulfite and/or bisulfite) species and results in elemental mercury (HgO) emissions under typical wet FGD scrubber conditions. The S(IV)-induced Hg2+ reduction and Hg0 emission mechanism can be described by a model which assumes that only a fraction of the Hg2+ can be reduced, and the rate-controlling step of the overall process is a first-order reaction involving the Hg-S(IV) complexes. Experimental data and model simulations predict that the Hg2+ in the flue gas can cause rapid increase of Hg0 concentration in the flue gas across a FGD scrubber. Forced oxidation can enhance Hg2+ reduction and Hg0 emission by decreasing the S(IV) concentration in the scrubbing liquor. The model predictions also indicate that flue gas Hg0 increase across a wet FGD scrubber can be reduced by decreasing the pH, increasing S(IV) concentration, and lowering the temperature.
    [Abstract] [Full Text] [Related] [New Search]