These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of altered calcium homeostasis on the expression of glutathione S-transferase isozymes in primary cultured rat hepatocytes.
    Author: Dwivedi RS, Gruebele A, Novak RF.
    Journal: Biochem Pharmacol; 1992 Dec 01; 44(11):2099-103. PubMed ID: 1472074.
    Abstract:
    The effects of altered Ca2+ homeostasis on glutathione S-transferase (GST) isozyme expression in cultured primary rat hepatocytes were examined. Isolated hepatocytes were cultured on Vitrogen substratum in serum-free modified Chee's essential medium and treated with Ca2+ ionophore A23187 at 120 hr post-plating. GST activity increased slightly, albeit significantly, in a concentration-dependent manner in A23187-treated hepatocytes relative to untreated controls. Western blot analysis using GST class alpha and mu specific antibodies showed an approximately 1.6- and 1.5-fold increase in the class alpha, Ya and Yc subunits, respectively, whereas no significant increase (approximately 1.2-fold) in class mu GST expression was observed following A23187 treatment. Northern blot analysis revealed an approximately 5-fold increase in GST class alpha and an approximately 7-fold increase in class mu GST mRNA levels in ionophore-treated hepatocytes compared to untreated cells. Results of the Western and Northern blot analyses of the ionophore-treated hepatocytes were compared with those obtained for tert-butyl hydroperoxide-treated cells. Immunoblot analysis showed a significant increase in the expression of GST class alpha, Ya and Yc subunits, approximately 1.8- and 1.7-fold, respectively, for tert-butyl hydroperoxide-treated hepatocytes as compared to controls, with little or no increase in class mu GSTs. Northern blot analysis showed approximately 3- and 2-fold increases, respectively, in class alpha and mu GST mRNA levels, following the tert-butyl hydroperoxide treatment. The results of the present investigation show that alterations in Ca2+ homeostasis produced by either Ca2+ ionophore A23187 or tert-butyl hydroperoxide treatment of hepatocytes enhanced the expression of GST isozymes in primary cultured rat hepatocytes.
    [Abstract] [Full Text] [Related] [New Search]