These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complex carbohydrate-lectin interaction at the interface: a model for cellular adhesion. II. Reactivity of both the oligosaccharide chain and sugar-binding domain of a glycoprotein lectin.
    Author: Chakrabarti A, Podder SK.
    Journal: J Mol Recognit; 1992 Jun; 5(2):69-73. PubMed ID: 1472382.
    Abstract:
    We describe studies of a new model cell adhesion system involving liposomes bearing lectins and the glycosphingolipid, asialomonosialoganglioside (asialoGM1). The model provides a simple analysis of experimental data to elucidate the mechanism of heterophilic cell-cell adhesion mediated by multiple protein-carbohydrate interactions. Phospholipid vesicles bearing the fatty acid conjugate of a glycoprotein lectin from Ricinus communis (RCAI vesicle) are shown to react with vesicles bearing the fatty acid conjugate of Concanavalin A (Con A) and asialoGM1 (Con A vesicle). The kinetics of aggregation and monosaccharide-induced disaggregation of the two types of vesicles were followed by monitoring the time-dependent change in turbidity. Depending on the surface density of the asialoGM1, 40-60% of the resulting precipitin complex was dissociable only in the presence of both RCAI-specific galactose and Con A-specific alpha-methyl-D-mannoside. Results indicate simultaneous participation of both the saccharide-binding domain and carbohydrate sequence of RCAI, a model cell adhesion molecule, to stabilize the encounter complex by two types of interactions. These findings support the possibility of stable cell-cell adhesion in vivo occurring via interactions between cell adhesion molecules on apposing cell-surface membranes.
    [Abstract] [Full Text] [Related] [New Search]