These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase.
    Author: Abramov AY, Canevari L, Duchen MR.
    Journal: J Neurosci; 2004 Jan 14; 24(2):565-75. PubMed ID: 14724257.
    Abstract:
    Beta-amyloid (betaA) peptide is strongly implicated in the neurodegeneration underlying Alzheimer's disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of betaA-induced neuronal death. betaA causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitochondrial response consists of Ca2+-dependent transient depolarizations superimposed on a slow collapse of potential. The slow response is both prevented by antioxidants and, remarkably, reversed by provision of glutamate and other mitochondrial substrates to complexes I and II. These findings suggest that the depolarization reflects oxidative damage to metabolic pathways upstream of mitochondrial respiration. Inhibition of NADPH oxidase by diphenylene iodonium or 4-hydroxy-3-methoxy-acetophenone blocks betaA-induced reactive oxygen species generation, prevents the mitochondrial depolarization, prevents betaA-induced glutathione depletion in both neurons and astrocytes, and protects neurons from cell death, placing the astrocyte NADPH oxidase as a primary target of betaA-induced neurodegeneration.
    [Abstract] [Full Text] [Related] [New Search]