These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis. Author: Yang SY, Wu B, Mayton L, Mukherjee P, Robbins PD, Evans CH, Wooley PH. Journal: Gene Ther; 2004 Mar; 11(5):483-91. PubMed ID: 14724688. Abstract: The current study evaluated the protective effects of anti-inflammatory cytokine gene transfer on osteolysis provoked by orthopedic biomaterial particles using a murine model of inflammatory bone loss. A section of bone was surgically implanted into an air pouch established on a syngeneic recipient mouse. Inflammation was provoked by introduction of ultra-high-molecular-weight polyethylene (UHMWPE) particles into the pouch, and retroviruses encoding for interleukin-1 receptor antagonist (hIL-1Ra), viral interleukin-10 (vIL-10), or LacZ genes were injected. Pouch fluid and tissue were harvested 7 days later for histological and molecular analyses. The results indicated that IL-1Ra or vIL-10 gene transfer significantly inhibited IL-1beta and tumor necrosis factor (TNF) expression at both mRNA and protein levels. There were significantly lower mRNA expressions of calcitonin receptor and cathepsin K in RNA isolated from hIL-1Ra- or vIL-10-transduced pouches than LacZ-transduced and virus-free controls. Both anti-inflammatory cytokine gene transfers significantly reduced the mRNA expression of M-CSF (70-90%) and RANK (>65%) in comparison with LacZ- and virus-free controls. Histological examination showed that hIL-1Ra or vIL-10 gene transfer dramatically abolished UHMWPE-induced inflammatory cellular infiltration and bone pit erosion compared to LacZ-transduced and virus-free controls. Histochemical staining revealed significantly fewer osteoclast-like cells in samples treated with IL-1Ra or vIL-10 gene transfer. In addition, bone collagen content was markedly preserved in the groups with anti-inflammatory cytokine gene transfers compared with the other two groups. Overall, retrovirus-mediated hIL-1Ra or vIL-10 gene transfer effectively protected against UHMWPE-particle-induced bone resorption, probably due to the inhibition of IL-1/TNF-induced M-CSF production and the consequent osteoclast recruitment and maturation.[Abstract] [Full Text] [Related] [New Search]