These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developing meaningful cohorts for human exposure models.
    Author: Graham SE, McCurdy T.
    Journal: J Expo Anal Environ Epidemiol; 2004 Jan; 14(1):23-43. PubMed ID: 14726943.
    Abstract:
    This paper summarizes numerous statistical analyses focused on the US Environmental Protection Agency's Consolidated Human Activity Database (CHAD), used by many exposure modelers as the basis for data on what people do and where they spend their time. In doing so, modelers tend to divide the total population being analyzed into "cohorts", to reduce extraneous interindividual variability by focusing on people with common characteristics. Age and gender are typically used as the primary cohort-defining attributes, but more complex exposure models also use weather, day-of-the-week, and employment attributes for this purpose. We analyzed all of these attributes and others to determine if statistically significant differences exist among them to warrant their being used to define distinct cohort groups. We focused our attention mostly on the relationship between cohort attributes and the time spent outdoors, indoors, and in motor vehicles. Our results indicate that besides age and gender, other important attributes for defining cohorts are the physical activity level of individuals, weather factors such as daily maximum temperature in combination with months of the year, and combined weekday/weekend with employment status. Less important are precipitation and ethnic data. While statistically significant, the collective set of attributes does not explain a large amount of variance in outdoor, indoor, or in-vehicle locational decisions. Based on other research, parameters such as lifestyle and life stages that are absent from CHAD might have reduced the amount of unexplained variance. At this time, we recommend that exposure modelers use age and gender as "first-order" attributes to define cohorts followed by physical activity level, daily maximum temperature or other suitable weather parameters, and day type possibly beyond a simple weekday/weekend classification.
    [Abstract] [Full Text] [Related] [New Search]