These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression and activation of signal regulatory protein alpha on astrocytomas. Author: Chen TT, Brown EJ, Huang EJ, Seaman WE. Journal: Cancer Res; 2004 Jan 01; 64(1):117-27. PubMed ID: 14729615. Abstract: High-grade astrocytomas and glioblastomas are usually unresectable because they extensively invade surrounding brain tissue. Here, we report the expression and function of a receptor on many astrocytomas that may alter both the proliferative and invasive potential of these tumors. Signal regulatory protein (SIRP) alpha1 is an immunoglobulin superfamily transmembrane glycoprotein that is normally expressed in subsets of myeloid and neuronal cells. Transfection of many cell types with SIRPalpha1, including glioblastomas, has been shown to inhibit their proliferation in response to a range of growth factors. Furthermore, the expression of a murine SIRPalpha1 mutant has been shown to enhance cell adhesion and initial cell spreading but to inhibit cell extension and movement. The extracellular portion of SIRPalpha1 binds CD47 (integrin-associated protein), although this interaction is not required for integrin-mediated activation of SIRPalpha1. On phosphorylation, SIRPalpha1 recruits the tyrosine phosphatases SHP-1 and SHP-2, which are important in its functions. Although SHP-1 is uniquely expressed on hematopoietic cells, SHP-2 is ubiquitously expressed, so that SIRPalpha1 has the potential to function in many cell types, including astrocytomas. Because SIRPalpha1 regulates cell functions that may contribute to the malignancy of these tumors, we examined the expression of SIRPs in astrocytoma cell lines by flow cytometry using a monoclonal antibody against all SIRPs. Screening of nine cell lines revealed clear cell surface expression of SIRPs on five cell lines, whereas Northern blotting for SIRPalpha transcripts showed mRNA present in eight of nine cell lines. All nine cell lines expressed the ligand for SIRPalpha1, CD47. To further examine the expression and function of SIRPs, we studied the SF126 and U373MG astrocytoma cell lines, both of which express SIRPs, in greater detail. SIRP transcripts in these cells are identical in sequence to SIRPalpha1. The expressed deglycosylated protein is the same size as SIRPalpha1, but in the astrocytoma cells, it is underglycosylated compared with SIRPalpha1 produced in transfected Chinese hamster ovary cells. It is nonetheless still capable of binding soluble CD47. Moreover, SIRPalpha1 in each of the two cell lines recruited SHP-2 on phosphorylation, and SIRPalpha1 phosphorylation in cultured cells is CD47 dependent. Finally, examination of frozen sections from 10 primary brain tumor biopsies by immunohistochemistry revealed expression of SIRPs on seven of the specimens, some of which expressed high levels of SIRPs. Most of the tumors also expressed CD47. This is the first demonstration that astrocytomas can express SIRPalpha. Given the known role of SIRPalpha in regulating cell adhesion and responses to mitogenic growth factors, the expression of SIRPalpha1 on astrocytomas may be of considerable importance in brain tumor biology, and it offers the potential of a new avenue for therapeutic intervention.[Abstract] [Full Text] [Related] [New Search]