These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of protein conformational mobility in enzyme catalysis: acylation of alpha-chymotrypsin by specific peptide substrates. Author: Hengge AC, Stein RL. Journal: Biochemistry; 2004 Jan 27; 43(3):742-7. PubMed ID: 14730979. Abstract: To probe the mechanistic origins of convex Eyring plots that have been observed for alpha-chymotrypsin (alpha-CT)-catalyzed hydrolysis of specific p-nitroanilide substrates [Case, A., and Stein, R. L. (2003) Biochemistry 42, 3335-3348], we determined the temperature-dependence of (15)N-kinetic isotope effects for the alpha-CT-catalyzed hydrolysis of N-succinyl-Phe p-nitroanilide (Suc-Phe-pNA). To provide an interpretational context for these enzymatic isotope effects, we also determined 15N-KIE for alkaline hydrolysis of p-nitroacetanilide. In 0.002 and 2 N hydroxide (30 degrees C), 15N-KIE values are 1.035 and 0.995 (+/-0.001), respectively, and are consistent with the reported [HO-]-dependent change in rate-limiting step from leaving group departure from an anionic tetrahedral intermediate in dilute base, to hydroxide attack in concentrated base. For the alpha-CT-catalyzed hydrolysis of Suc-Phe-pNA, 15N-KIE is on kc/Km and thus reflects structural features of transition states for all reaction steps up to and including acylation of the active site serine. The isotope effect at 35 degrees C is 1.014 (+/-0.001) and suggests that in the transition state for this reaction, departure of leaving group from the tetrahedral intermediate is well advanced. Significantly, 15N-KIE does not vary over the temperature range 5-45 degrees C. This result eliminates one of the competing hypotheses for the convex Eyring plot observed for this reaction, that is, a temperature-dependent change in rate-limiting step within the chemical manifold of acylation, but supports a mechanism in which an isomerization of enzyme conformation is coupled to active site chemistry. We finally suggest that the near absolute temperature-independence of 15N-KIE may point to a unique transition state for this process.[Abstract] [Full Text] [Related] [New Search]