These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reactions of 4-oxalocrotonate tautomerase and YwhB with 3-halopropiolates: analysis and implications.
    Author: Wang SC, Johnson WH, Czerwinski RM, Whitman CP.
    Journal: Biochemistry; 2004 Jan 27; 43(3):748-58. PubMed ID: 14730980.
    Abstract:
    4-Oxalocrotonate tautomerase (4-OT) and YwhB, a 4-OT homologue found in Bacillus subtilis, exhibit a low level hydratase activity that converts trans-3-haloacrylates to acetaldehyde, presumably through a malonate semialdehyde intermediate. The mechanism for the initial transformation of the 3-haloacrylate to malonate semialdehyde involves Pro-1 as well as an arginine, two residues that play critical roles in the 4-OT-catalyzed isomerization reaction and the YwhB-catalyzed tautomerization reaction. These residues are also critical for the trans-3-chloroacrylic acid dehalogenase (CaaD)-catalyzed conversion of trans-3-haloacrylates to malonate semialdehyde. Recently, 3-bromo- and 3-chloropropiolate, the acetylene analogues of 3-haloacrylates, were characterized as potent irreversible inhibitors of CaaD due to the covalent modification of the catalytic proline. In view of these observations, an investigation of the behavior of 4-OT and YwhB with the 3-halopropiolates was undertaken. The results show that these compounds are potent irreversible inhibitors of 4-OT and YwhB with Pro-1 being the sole site of covalent modification by 3-bromopropiolate. The inactivation process could involve the enzyme-catalyzed addition of water to the 3-halopropiolate yielding an acyl halide, which would inactivate the enzyme or be initiated by the nucleophilic attack of Pro-1 at the C-3 position of the 3-halopropiolate in a Michael type reaction. The presence of the halogen along with Arg-11 could facilitate both reactions with the latter causing the polarization of the alpha,beta-unsaturated acids. The 3-halopropiolates are the first identified inhibitors of YwhB and confirm the importance of Pro-1 in its mechanism. In addition, the results set the stage for the use of these compounds as mechanistic probes of the primary as well as low level activities of 4-OT and YwhB.
    [Abstract] [Full Text] [Related] [New Search]