These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of a water-soluble, sulfated (1-->3)-beta-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Author: Williams DL, Pretus HA, McNamee RB, Jones EL, Ensley HE, Browder IW. Journal: Carbohydr Res; 1992 Nov 04; 235():247-57. PubMed ID: 1473107. Abstract: This report describes a method for the solubilization of micro-particulate (1-->3)-beta-D-glucan. Insoluble glucan is dissolved in methyl sulfoxide and urea (8 M) and partially sulfated at 100 degrees. The resulting water-soluble product is called glucan sulfate. The conversion rate is 98%, and the preparation is endotoxin free as determined by the Limulus lysate procedure. Glucan sulfate is composed of 34.06% C, 6.15% H, 50.30% O, 5.69% S and 3.23% N, and has a repeating unit empirical formula of (C6H10O5)8.3 SO3NH4+.4 H2O, suggesting that, on the average, a sulfate group is substituted on every third glucose subunit along the polymer. Molecular weight averages, polydispersity, and intrinsic viscosity were determined by aqueous high-performance size-exclusion chromatography (HPSEC). Two polymer peaks were resolved. Peak 1 (Mw = 1.25 x 10(6) g/mol) represents < 1% of the total polymer mass. Peak 2 (Mw = 1.45 x 10(4) g/mol) comprises > 99% of polymers. 13C NMR spectroscopy confirmed the beta-(1-->3) interchain linkage. In solution, glucan sulfate polymers self-associate in a triple helix. Glucan sulfate stimulates murine bone marrow proliferation following intravenous administration. The ability to prepare a immunologically active, water-soluble (1-->3)-beta-D-glucan preparation will greatly enhance the clinical utility of this class of compounds.[Abstract] [Full Text] [Related] [New Search]