These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on the mechanisms of action of picrotoxin, quercetin and pregnanolone at the GABA rho 1 receptor.
    Author: Goutman JD, Calvo DJ.
    Journal: Br J Pharmacol; 2004 Feb; 141(4):717-27. PubMed ID: 14732759.
    Abstract:
    1. The mechanisms of action of antagonists of the gamma-aminobutyric acid C (GABA(C)) receptor picrotoxin, quercetin and pregnanolone were studied. 2. Ionic currents (chloride), mediated through human homomeric GABA rho(1) receptors expressed in Xenopus oocytes, were recorded by two-electrode voltage clamp. 3. Dose-response (D-R) curves and kinetic measurements of GABA rho(1) currents were carried out in the presence or absence of antagonists. Use-dependent actions were also evaluated. 4. Picrotoxin, quercetin and pregnanolone exerted noncompetitive actions. 5. IC(50) values measured at the EC(50) for GABA (1 microM) were as follows: picrotoxin 0.6+/-0.1 microM (Hill coefficient n=1.0+/-0.2); quercetin 4.4+/-0.4 microM (n=1.5+/-0.2); pregnanolone 2.1+/-0.5 microM (n=0.8+/-0.1). 6. These antagonists produced changes only in the slope of the linear current-voltage relationships, which was indicative of voltage-independent effects. 7. The effect of picrotoxin on GABA rho(1) currents was use-dependent, strongly relied on agonist concentration and showed a slow onset and offset. The mechanism was compatible with an allosteric inhibition and receptor activation was a prerequisite for antagonism. 8. The effect of quercetin was use-independent, showed relatively fast onset and offset, and resulted in a slowed time course of the GABA-evoked currents. 9. The effect of pregnanolone was use-independent, presented fast onset and a very slow washout, and did not affect current activation. 10. All the antagonists accelerated the time course of deactivation of the GABA rho(1) currents.
    [Abstract] [Full Text] [Related] [New Search]