These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of interactions of endotoxin with host cells.
    Author: Gioannini TL, Teghanemt A, Zarember KA, Weiss JP.
    Journal: J Endotoxin Res; 2003; 9(6):401-8. PubMed ID: 14733729.
    Abstract:
    Potent Toll-like receptor 4 (TLR4)-dependent cell activation by endotoxin requires lipopolysaccharide-binding protein (LBP) and CD14-dependent delivery of endotoxin to cells containing MD-2 and TLR4. We have used metabolically labeled [(14)C] meningococcal lipooligosaccharide (LOS), purified recombinant endotoxin-binding proteins, and cultured endothelial cells to better define protein:endotoxin intermediates key in cell activation in the absence of functional membrane (m) CD14. Protein:endotoxin complexes or aggregates (agg) were purified by gel sieving and characterized by immunocapture and bio-assays. Cell activation closely correlated with LBP, albumin and soluble (s) CD14-dependent conversion of endotoxin agg (M(r) > or = 20 x 10(6)) to monomeric (M(r) approximately 55 x 10(3)) endotoxin:sCD14 complexes. Ordered interaction of LBP (+ albumin) and sCD14 with LOSagg was required for the efficient formation of a bioactive endotoxin:sCD14 complex and potent cell activation. Increasing the ratio of LBP/sCD14 or addition of bactericidal/permeability-increasing protein (BPI) reduced accumulation of endotoxin:sCD14 complexes and instead yielded aggregates of endotoxin (M(r) approximately 1-20 x 10(6)) containing LBP or BPI that were taken up by cells in a CD14- and TLR4-independent manner without inducing pro-inflammatory responses. These findings strongly suggest that host machinery linked to TLR4-dependent cellular activation or TLR4-independent cellular clearance of endotoxin selectively recognizes different protein:endotoxin complexes. At the outset of infection, the low concentrations of LBP present and absence of extracellular BPI favor formation of pro-inflammatory endotoxin:CD14 complexes. The mobilization of LBP and BPI that is triggered by inflammation directs endotoxin for clearance and hence resolution of endotoxin-triggered inflammation.
    [Abstract] [Full Text] [Related] [New Search]