These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes. Author: Kambayashi T, Kraft-Leavy JR, Dauner JG, Sullivan BA, Laur O, Jensen PE. Journal: J Immunol; 2004 Feb 01; 172(3):1661-9. PubMed ID: 14734748. Abstract: The MHC class Ib molecule Qa-1 is the primary ligand for mouse CD94/NKG2A inhibitory receptors expressed on NK cells, in addition to presenting Ags to a subpopulation of T cells. CD94/NKG2A receptors specifically recognize Qa-1 bound to the MHC class Ia leader sequence-derived peptide Qdm. Qdm is the dominant peptide loaded onto Qa-1 under physiological conditions and this peptide has an optimal sequence for binding to Qa-1. Peptide dissociation experiments demonstrated that Qdm dissociates from soluble or cell surface Qa-1(b) molecules with a t(1/2) of approximately 1.5 h at 37 degrees C. In comparison, complexes of an optimal peptide (SIINFEKL) bound to the MHC class Ia molecule H-2K(b) dissociated with a t(1/2) in the range from 11 to 31 h. In contrast to K(b), the stability of cell surface Qa-1(b) molecules was independent of bound peptides, and several observations suggested that empty cell surface Qa-1(b) molecules might be unusually stable. Consistent with the rapid dissociation rate of Qdm from Qa-1(b), cells become susceptible to lysis by CD94/NKG2A(+) NK cells under conditions in which new Qa-1(b)/Qdm complexes cannot be continuously generated at the cell surface. These results support the hypothesis that Qa-1 has been selected as a specialized MHC molecule that is unable to form highly stable peptide complexes. We propose that the CD94/NKG2A-Qa-1/Qdm recognition system has evolved as a rapid sensor of the integrity of the MHC class I biosynthesis and Ag presentation pathway.[Abstract] [Full Text] [Related] [New Search]