These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of the anticonstrictor action of dihydropyridines (nimodipine and nicardipine) and Mg2+ in isolated human cerebral arteries.
    Author: Alborch E, Salom JB, Perales AJ, Torregrosa G, Miranda FJ, Alabadí JA, Jover T.
    Journal: Eur J Pharmacol; 1992 Dec 08; 229(1):83-9. PubMed ID: 1473564.
    Abstract:
    The isometric tension recorded from ring segments of branches of human middle cerebral artery was the parameter used to study the inhibition of spasmogen-induced contractions as model for cerebral vasospasm. Concentration-response curves to 5-hydroxytryptamine (10(-9)-3 x 10(-5) M) and prostaglandin F2 alpha (10(-7)-3 x 10(-5) M) were inhibited in Ca(2+)-free medium and in Ca(2+)-free medium to which EGTA (1 mM) had been added, respectively. Nimodipine (10(-7), 10(-5) M), nicardipine (10(-7), 10(-5) M) and Mg2+ (magnesium sulfate 10(-4), 10(-2) M) inhibited the 5-HT-elicited contractions, and this inhibition was similar for the highest concentrations tested. In contrast, nimodipine and nicardipine were more effective than Mg2+ to inhibit the prostaglandin F2 alpha-elicited contractions. Nimodipine (10(-9)-10(-5) M), nicardipine (10(-9)-10(-5) M) and Mg2+ (10(-5)-3 x 10(-2) M) relaxed the arteries precontracted with PGF2 alpha (10(-5) M), but nicardipine was the most potent relaxant drug. Because 5-hydroxytryptamine and prostaglandin F2 alpha may be involved in the pathogenesis of cerebral vasospasm, nimodipine, nicardipine, and Mg2+ could be used in the pharmacological treatment of this disorder. However, dihydropyridines (particularly nicardipine) are more potent anticonstrictors than Mg2+.
    [Abstract] [Full Text] [Related] [New Search]