These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alpha 2- and beta-adrenoceptors differentially modulate GABAA- and GABAB-mediated inhibition of red nucleus neuronal firing. Author: Ciranna L, Licata F, Li Volsi G, Santangelo F. Journal: Exp Neurol; 2004 Feb; 185(2):297-304. PubMed ID: 14736511. Abstract: In mesencephalic red nucleus (RN), GABA-induced inhibition of neuronal firing is modulated by noradrenaline acting on alpha2- and beta-adrenoceptors. Since both GABAA and GABAB receptors are present in the rat RN, we have recorded the firing activity of RN neurons in vivo from anaesthetized rats to study how GABAA- and GABAB-mediated effects are modulated by either alpha2- or beta-adrenoceptor activation. Both the GABAA agonist isoguvacine and the GABAB agonist baclofen depressed the firing of RN neurons. During simultaneous application of clonidine, an alpha2-adrenoceptor agonist, half of the isoguvacine- and baclofen-mediated responses were modified: isoguvacine-mediated inhibition was enhanced by 97% without any change in effect duration, whereas baclofen responses were either increased or slightly reduced in the same number of cases. Application of isoprenaline, a beta-adrenoceptor agonist, increased isoguvacine effect in 66% of neurons without modifying effect duration; the amount of increase (43%) was significantly lower than that induced by clonidine. On the other hand, in the presence of isoprenaline, baclofen response was reduced in 72% of neurons with respect to both the amount (52%) and the duration (34%) of effect. Taken together, these results indicate that alpha2-adrenoceptors mainly enhance GABAA-induced inhibition and induce mixed effects on GABAB response; on the other side, beta-adrenoceptors exert an opposite modulation on GABA effects, respectively, enhancing and depressing GABAA- and GABAB-mediated responses.[Abstract] [Full Text] [Related] [New Search]