These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of a 1-yr stay at altitude on ventilation, metabolism, and work capacity. Author: Serebrovskaya TV, Ivashkevich AA. Journal: J Appl Physiol (1985); 1992 Nov; 73(5):1749-55. PubMed ID: 1474047. Abstract: The hypoxic and hypercapnic ventilatory drive, gas exchange, blood lactate and pyruvate concentrations, acid-base balance, and physical working capacity were determined in three groups of healthy males: 17 residents examined at sea level (group I), 24 sea-level natives residing at 1,680-m altitude for 1 yr and examined there (group II), and 17 sea-level natives residing at 3,650-m altitude for 1 yr and examined there (group III). The piecewise linear approximation technique was used to study the ventilatory response curves, which allowed a separate analysis of slopes during the first phase of slow increase in ventilation and the second phase of sharp increase. The hypoxic ventilatory response for both isocapnic and poikilocapnic conditions was greater in group II and even greater in group III. The first signs of consciousness distortion in sea-level residents appeared at an end-tidal O2 pressure level (4.09 +/- 0.56 kPa) higher than that of temporary residents of middle (3.05 +/- 0.12) and high altitude (2.90 +/- 0.07). The hypercapnic response was also increased, although to a lesser degree. Subjects with the highest hypoxic respiratory sensitivity at high altitude demonstrated greater O2 consumption at rest, greater ventilatory response to exercise, higher physical capacity, and a less pronounced anaerobic glycolytic flux but a lower tolerance to extreme hypoxia. That is, end-tidal O2 pressure that caused a distortion of the consciousness was higher in these subjects than in those with lower hypoxic sensitivity. Two extreme types of adaptation strategy can be distinguished: active, with marked reactions of "struggle for oxygen," and passive, with reduced O2 metabolism, as well as several intermediate types.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]