These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amino- and carboxyl-terminal mutants of presenilin 1 cause neuronal cell death through distinct toxic mechanisms: Study of 27 different presenilin 1 mutants.
    Author: Hashimoto Y, Tsukamoto E, Niikura T, Yamagishi Y, Ishizaka M, Aiso S, Takashima A, Nishimoto I.
    Journal: J Neurosci Res; 2004 Feb 01; 75(3):417-28. PubMed ID: 14743455.
    Abstract:
    Presenilin (PS)1 and its mutants, which consist of the N-terminal and C-terminal fragments, cause certain familial forms of Alzheimer's disease (FAD). Our earlier studies found that FAD-linked M146L-PS1 causes neuronal cell death through nitrogen oxide synthase (NOS) and that FAD-linked N141I-PS2, another member of the PS family, causes neuronal cell death through NADPH oxidase. In this study, we examined 27 different FAD-linked mutants of PS1, and found that PS1 mutants with mutations in the N-terminal fragment caused NOS inhibitor (NOSI)-sensitive neuronal cell death; in contrast, the PS1 mutants with mutations in the C-terminal fragment caused NOSI-resistant neuronal cell death. The former toxicity was resistant to the specific NADPH oxidase inhibitor apocynin and was inhibited by Humanin (HN), a newly identified neuroprotective factor against Alzheimer's disease (AD)-relevant insults, but not by insulin-like growth factor-I (IGF-I). In contrast, the latter toxicity was sensitive to apocynin and inhibited by both IGF-I and HN. This study indicates for the first time that N- and C-terminal fragment PS1 mutants can generate distinct neurotoxic signals, which will provide an important clue to the understanding of the entire array of neurotoxic signals generated by FAD-causative mutations of PS1.
    [Abstract] [Full Text] [Related] [New Search]