These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Substrate preference in phosphatidylserine biosynthesis for docosahexaenoic acid containing species. Author: Kim HY, Bigelow J, Kevala JH. Journal: Biochemistry; 2004 Feb 03; 43(4):1030-6. PubMed ID: 14744148. Abstract: Neuronal membranes contain high levels of phosphatidylserine (PS) and docosahexaenoic acid (22:6n-3, DHA). In this study, substrate preference in PS synthesis was determined to gain insight on the biochemical basis for concentrating PS in neuronal membranes where 22:6n-3 is highly enriched. We first established an in vitro assay method using unilamellar vesicles (LUV) of deuterium-labeled substrates and reversed-phase HPLC/electrospray ionization (ESI) mass spectrometry. The PS production by the incubation of deuterium-labeled substrate and microsomal fractions was monitored. We found that tissue-specific substrate preference exists in PS synthesis. Microsomes from the cerebral cortex synthesized PS from 18:0,22:6-PC most favorably among the PC substrates tested, followed by 18:0,22:5-PC, resulting in the PC substrate preference in the order of 18:0,22:6 > 18:0,22:5 > 18:0,20:4 = 18:0,18:1. Liver microsomes also preferred 18:0,22:6-PC as the substrate in PS synthesis but did not use 18:0,22:5-PC favorably. The 18:0,22:5-PC species was converted to PS at the similar extent as 18:0,20:4- or 18:0,18:1-PC species in the liver. Both brain and liver microsomes showed a preference for 18:0 over 16:0 as the sn-1 fatty acid. From these data it was deduced that preferential conversion of 18:0,22:6-PC to the corresponding PS species is at least partly responsible for concentrating PS in neuronal tissues where 22:6n-3 is particularly abundant. The distinctive preference for 18:0,22:5-PS observed with brain microsomes may help to maintain PS at a high level in the brain when 22:6n-3 is replaced by 22:5n-3 as in the case of n-3 fatty acid deficiency.[Abstract] [Full Text] [Related] [New Search]