These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. Author: Watson AM, Mogulkoc R, McAllen RM, May CN. Journal: Am J Physiol Regul Integr Comp Physiol; 2004 Jun; 286(6):R1051-6. PubMed ID: 14751846. Abstract: Central actions of angiotensin play an important role in cardiovascular control and have been implicated in the pathogenesis of hypertension and heart failure. One feature of centrally or peripherally administered angiotensin is that the bradycardia in response to an acute pressor effect is blunted. It is unknown whether after central angiotensin this is due partly to increased cardiac sympathetic nerve activity (CSNA). We recorded CSNA and arterial pressure in conscious sheep, at least 3 days after electrode implantation. The effects of intracerebroventricular infusions of ANG II (3 nmol/h for 30 min) and artificial cerebrospinal fluid (CSF) (1 ml/h) were determined. The response to intracerebroventricular hypertonic saline (0.6 M NaCl in CSF at 1 ml/h) was examined as there is evidence that hypertonic saline acts via angiotensinergic pathways. Intracerebroventricular angiotensin increased CSNA by 23 +/- 7% (P < 0.001) and mean arterial pressure (MAP) by 7.6 +/- 1.2 mmHg (P < 0.001) but did not significantly change heart rate (n = 5). During intracerebroventricular ANG II the reflex relation between CSNA and diastolic blood pressure was significantly shifted to the right (P < 0.01). Intracerebroventricular hypertonic saline increased CSNA (+9.4 +/- 6.6%, P < 0.05) and MAP but did not alter heart rate. The responses to angiotensin and hypertonic saline were prevented by intracerebroventricular losartan (1 mg/h). In conclusion, in conscious sheep angiotensin acts within the brain to increase CSNA, despite increased MAP. The increase in CSNA may account partly for the lack of bradycardia in response to the increased arterial pressure. The responses to angiotensin and hypertonic saline were losartan sensitive, indicating they were mediated by angiotensin AT-1 receptors.[Abstract] [Full Text] [Related] [New Search]