These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Treatment of domestic sewage at low temperature in a two-anaerobic step system followed by a trickling filter.
    Author: Elmitwalli TA, van Lier J, Zeeman G, Lettinga G.
    Journal: Water Sci Technol; 2003; 48(11-12):199-206. PubMed ID: 14753537.
    Abstract:
    The treatment of domestic sewage at low temperature was studied in a two-anaerobic-step system followed by an aerobic step, consisting of an anaerobic filter (AF) + an anaerobic hybrid (AH) + polyurethane-foam trickling filter (PTF). The AF+AH system was operated at a hydraulic retention time (HRT) of 3+6 h at a controlled temperature of 13 degrees C, while the PTF was operated without wastewater recirculation at different hydraulic loading rates (HLR) of 41, 15.4 and 2.6 m3/m2/d at ambient temperature (ca. 15-18 degrees C). The AF reactor removed the major part of the total and suspended COD, viz. 46 and 58% respectively. The AH reactor with granular sludge was efficient in the removal and conversion of the anaerobically biodegradable COD. The AF+AH system removed 63% of total COD and converted 46% of the influent total COD to methane. At a HLR of 41 m3/m2/d, the COD removal was limited in the PTF, while at HLR of 15.4 and 2.6 m3/m2/d, a high total COD removal of 54-57% was achieved without a significant difference between the two HLRs. The PTF was mainly efficient in the removal of particles (suspended and colloidal COD removal were 75-90% and 75-83% respectively), which were not removed in the anaerobic two-step. The overall total COD removal in the AF+AH+PTF system was 85%. Decreasing the HLR from 15.4 to 2.6 m3/m2/d, only increased the nitrification rate efficiency in the PTF from 22% to 60%. Also, at HLR of 15.4 and 2.6 m3/m2/d, PTF showed a similar removal for E. coli by about 2 log. Therefore, the effluent of AF+AH+PTF system can be utilised for restricted irrigation in order to close water and nutrients cycles. Moreover, such a system represents a high-load and a low-cost technology, which is a suitable solution for developing countries.
    [Abstract] [Full Text] [Related] [New Search]