These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias.
    Author: Zima AV, Blatter LA.
    Journal: J Physiol; 2004 Mar 16; 555(Pt 3):607-15. PubMed ID: 14754996.
    Abstract:
    Inositol-1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release represents the major Ca(2+) mobilizing pathway responsible for diverse functions in non-excitable cells. In the heart, however, its role is largely unknown or controversial. In intact cat atrial myocytes, endothelin (ET-1) increased basal [Ca(2+)](i) levels, enhanced action potential-evoked [Ca(2+)](i) transients, caused [Ca(2+)](i) transients with alternating amplitudes (Ca(2+) alternans), and facilitated spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) in the form of Ca(2+) sparks and arrhythmogenic Ca(2+) waves. These effects were prevented by the IP(3) receptor (IP(3)R) blocker aminoethoxydiphenyl borate (2-APB), suggesting the involvement of IP(3)-dependent SR Ca(2+) release. In saponin-permeabilized myocytes IP(3) and the more potent IP(3)R agonist adenophostin increased basal [Ca(2+)](i) and the frequency of spontaneous Ca(2+) sparks. In the presence of tetracaine to eliminate Ca(2+) release from ryanodine receptor (RyR) SR Ca(2+) release channels, IP(3) and adenophostin triggered unique elementary, non-propagating IP(3)R-dependent Ca(2+) release events with amplitudes and kinetics that were distinctly different from classical RyR-dependent Ca(2+) sparks. The effects of IP(3) and adenophostin were prevented by heparin and 2-APB. The data suggest that IP(3)-dependent Ca(2+) release increases [Ca(2+)](i) in the vicinity of RyRs and thus facilitates Ca(2+)-induced Ca(2+) release during excitation-contraction coupling. It is concluded that in the adult mammalian atrium IP(3)-dependent Ca(2+) release enhances atrial Ca(2+) signalling and exerts a positive inotropic effect. In addition, by facilitating Ca(2+) release, IP(3) may also be an important component in the development of Ca(2+)-mediated atrial arrhythmias.
    [Abstract] [Full Text] [Related] [New Search]