These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinctive regulation and function of PI 3K/Akt and MAPKs in doxorubicin-induced apoptosis of human lung adenocarcinoma cells. Author: Zhao Y, You H, Yang Y, Wei L, Zhang X, Yao L, Fan D, Yu Q. Journal: J Cell Biochem; 2004 Feb 15; 91(3):621-32. PubMed ID: 14755690. Abstract: Regulation and function of PI 3K/Akt and mitogen-activated protein kinases (MAPKs) in doxorubicin-induced cell death were investigated in human lung adenocarcinoma cells. Doxorubicin induced dose-dependent apoptosis of human lung adenocarcinoma NCI-H522 cells. Prior to cell death, both Akt and the MAPK family members (MAPKs: ERK1/2, JNK, and p38) were activated in response to the drug treatment. The kinetics of the inductions for Akt and MAPKs are, however, distinct. The activation of Akt was rapid and transient, activated within 30 min of drug addition, then declined after 3 h, whereas the activations of three MAPKs occurred later, 4 h after addition of the drug and sustained until cell death occurred. Inhibition of PI 3K/Akt activation had no effect on MAPKs' activation, suggesting that the two pathways are independently activated in response to the drug treatment. Inhibition of PI 3K/Akt and p38 accelerated and enhanced doxorubicin-induced cell death. On the contrary, inhibition of ERK1/2 or JNK had no apparent effect on the cell death. Taken together, these results suggest that PI 3K/Akt and MAPKs signaling pathways are all activated, but with distinct mechanisms, in response to doxorubicin treatment. Activation of PI 3K/Akt and p38 modulates apoptotic signal pathways and inhibits doxorubicin-induced cell death. These responses of tumor cells to cancer drug treatment may contribute to their drug resistance. Understanding of the mechanism and function of the responses will be beneficial for the development of novel therapeutic approaches for improvement of drug efficacy and circumvention of drug resistance.[Abstract] [Full Text] [Related] [New Search]