These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cholecystokinin2-receptor mediates calcitonin secretion, gene expression, and proliferation in the human medullary thyroid carcinoma cell line, TT. Author: Bläker M, Arrenberg P, Stange I, Schulz M, Burghardt S, Michaelis H, Pace A, Greten H, von Schrenck T, de Weerth A. Journal: Regul Pept; 2004 Apr 15; 118(1-2):111-7. PubMed ID: 14759564. Abstract: Gastrin-induced release of calcitonin from medullary thyroid carcinomas (MTC) is based on the expression of the cholecystokinin(2)-receptor (CCK(2)R) in these tumors. Recently, we have shown that the CCK(2)R is expressed not only in MTC but also in C-cells within the normal thyroid gland. The functions of the CCK(2)R in MTC and C-cells are largely unknown. We therefore explored the effects of gastrin-induced CCK(2)R stimulation in the highly differentiated MTC cell line, TT. CCK(2)R expression in TT-cells is detectable by RT-PCR as well as immunocytochemistry. Stimulation of the CCK(2)R by gastrin induces immediate release of calcitonin from TT-cells. Moreover, quantitative (LightCycler) RT-PCR demonstrates that gastrin stimulates transcription of the calcitonin and chromogranin A genes in TT-cells. TT-cell proliferation, assessed by counting of viable cells and (3)H-thymidine uptake, is markedly increased by gastrin. This effect is inhibited by the CCK(2)R-specific antagonist L-365,260. Our findings suggest physiological functions for the CCK(2)R in calcitonin-secretion and gene expression as well as a pathophysiological role in MTC proliferation. CCK(2)R antagonists might have therapeutic potential in these tumors.[Abstract] [Full Text] [Related] [New Search]