These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta.
    Author: Ijichi H, Otsuka M, Tateishi K, Ikenoue T, Kawakami T, Kanai F, Arakawa Y, Seki N, Shimizu K, Miyazono K, Kawabe T, Omata M.
    Journal: Oncogene; 2004 Feb 05; 23(5):1043-51. PubMed ID: 14762439.
    Abstract:
    The transforming growth factor-beta (TGF-beta)-Smad signaling pathway inhibits the growth of human epithelial cells and plays a role in tumor suppression. The Smad4 gene is mutated or deleted in 50% of pancreatic cancers. In this study, the Smad4-null pancreatic cancer cell line BxPC-3 was transfected with either the Smad4 expression vector or the empty vector and incubated in the presence or absence of TGF-beta. The cells were analysed using a cDNA microarray, which included 2280 named genes to screen for target genes regulated by TGF-beta in either a Smad4-dependent or -independent manner. The microarray and subsequent quantitative RT-PCR analysis demonstrated that the Smad4-independent and -dependent signaling pathways driven by TGF-beta upregulated only one of the 2280 genes, respectively, suggesting that Smad4-independent signaling downstream of TGF-beta might be as widespread as Smad4-dependent signaling. In this study, we demonstrated that the cyclin-dependent kinase inhibitor p21/WAF1, which has been considered the major effector of the Smad-dependent growth inhibitory signal of TGF-beta, is upregulated in a Smad4-independent manner. The upregulation occurs through Smad2/3-dependent transcriptional activation of the p21/WAF1 promoter region. These results suggest a novel mechanism of gene regulation, that is, a novel signal mediator other than Smad4.
    [Abstract] [Full Text] [Related] [New Search]