These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement. Author: Wong CT, Lu WW, Chan WK, Cheung KM, Luk KD, Lu DS, Rabie AB, Deng LF, Leong JC. Journal: J Biomed Mater Res A; 2004 Mar 01; 68(3):513-21. PubMed ID: 14762931. Abstract: The purpose of this study was to investigate the in vivo bone response to the strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement injected into the cancellous bone. Sr-HA cement was injected into the iliac crest of rabbits for 1, 3, and 6 months. Active bone formation and remodeling were observed after 1 month. Newly formed bone was observed to grow onto the bone cement after 3 months. Thick osteoid layer with osteoblasts formed along the bone and guided over the bone cement surface reflected the stimulating effect of Sr-HA. From scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis, high calcium and phosphorus levels were detected at the interface with a thick layer of 70 microm in width, and fusion of Sr-HA with the bone was observed. Blood vessels were found developing in remodeling sites. The affinity of bone on Sr-HA cement was increased from 73.55 +/- 3.50% after 3 months up to 85.15 +/- 2.74% after 6 months (p < 0.01). In contrast to Sr-HA cement, poly(methyl methacrylate) (PMMA) bone cement was neither osteoconductive nor bioresorbable. Results show that the Sr-HA cement is biocompatible and osteoconductive, which is suitable for use in treating osteoporotic vertebral fractures.[Abstract] [Full Text] [Related] [New Search]