These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of three-dimensional culturing in a fibrous matrix on cell cycle, apoptosis, and MAb production by hybridoma cells. Author: Luo J, Yang ST. Journal: Biotechnol Prog; 2004; 20(1):306-15. PubMed ID: 14763857. Abstract: The effects of culturing hybridoma cells in a three-dimensional (3-D) poly(ethylene terephthalate) (PET) fibrous matrix on cell cycle, apoptosis, metabolism, and monoclonal antibody (MAb) production were evaluated by comparing with two-dimensional (2-D) culturing on microcarrier and multiwell plate surfaces. The percentage of cells in the G1/G0 phase increased during the long-term culturing period of approximately 4 weeks. Compared to the 2-D culture systems, cells grown in 3-D matrices had higher MAb productivity for long-term culture. Decreasing serum content in the culture medium increased both MAb productivity and apoptosis. However, the 3-D culture had a greater increase in MAb productivity and a much lower apoptotic rate than the 2-D culture, especially at 0% serum. Most cells in the 3-D fibrous matrix formed large aggregates and were smaller than cells grown on a 2-D surface or in suspension. The smaller cell size allowed cells to survive better in the high-cell-density environment. The fibrous matrix also selectively retained healthy, nonapoptotic cells. These results suggested that the 3-D fibrous matrix contributed to growth arrest, protected cells to better resist low-serum environments, and reduced apoptosis, all of which contributed to the high viable cell density and volumetric MAb productivity in the long-term 3-D culture.[Abstract] [Full Text] [Related] [New Search]