These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The extra-retinal motion aftereffect. Author: Freeman TC, Sumnall JH, Snowden RJ. Journal: J Vis; 2003 Dec 05; 3(11):771-9. PubMed ID: 14765960. Abstract: Repetitive eye movements are known to produce motion aftereffect (MAE) when made to track a moving stimulus. Explanations typically centre on the retinal motion created in the peripheral visual field by the eye movement. This retinal motion is thought to induce perceived motion in the central test, either through the interaction between peripheral MAE and central target or by adaptation of mechanisms sensitive to the relative motion created between centre and surround. Less attention has been paid to possible extra-retinal contributions to MAE following eye movement. Prolonged eye movement leads to afternystagmus which must be suppressed in order to fixate the stationary test. Chaudhuri (1991, Vision Research, 131, 1639-1645) proposed that nystagmus-suppression gives rise to an extra-retinal motion signal that is incorrectly interpreted as movement of the target. Chaudhuri's demonstration of extra-retinal MAE depended on repeated pursuit to induce the aftereffect. Here we describe conditions for an extra-retinal MAE that follows more reflexive, nystagmus-like eye movement. The MAE is extra-retinal in origin because it occurs in part of the visual field that received no retinal motion stimulation during adaptation. In an explicit test of the nystagmus-suppression hypothesis, we find extra-retinal MAE fails to store over a 30s delay between adaptation and test. Implications for our understanding of motion aftereffects are discussed.[Abstract] [Full Text] [Related] [New Search]