These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human aldolase A natural mutants: relationship between flexibility of the C-terminal region and enzyme function. Author: Esposito G, Vitagliano L, Costanzo P, Borrelli L, Barone R, Pavone L, Izzo P, Zagari A, Salvatore F. Journal: Biochem J; 2004 May 15; 380(Pt 1):51-6. PubMed ID: 14766013. Abstract: We have identified a new mutation in the FBP (fructose 1,6-bisphosphate) aldolase A gene in a child with suspected haemolytic anaemia associated with myopathic symptoms at birth and with a subsequent diagnosis of arthrogryposis multiplex congenita and pituitary ectopia. Sequence analysis of the whole gene, also performed on the patient's full-length cDNA, revealed only a Gly346-->Ser substitution in the heterozygous state. We expressed in a bacterial system the new aldolase A Gly346-->Ser mutant, and the Glu206-->Lys mutant identified by others, in a patient with an aldolase A deficit. Analysis of their functional profiles showed that the Gly346Ser mutant had the same Km as the wild-type enzyme, but a 4-fold lower kcat. The Glu206-->Lys mutant had a Km approx. 2-fold higher than that of both the Gly346-->Ser mutant and the wild-type enzyme, and a kcat value 40% less than the wild-type. The Gly346-->Ser and wild-type enzymes had the same Tm (melting temperature), which was approx. 6-7 degrees C higher than that of the Glu206-->Lys enzyme. An extensive molecular graphic analysis of the mutated enzymes, using human and rabbit aldolase A crystallographic structures, suggests that the Glu206-->Lys mutation destabilizes the aldolase A tetramer at the subunit interface, and highlights the fact that the glycine-to-serine substitution at position 346 limits the flexibility of the C-terminal region. These results also provide the first evidence that Gly346 is crucial for the correct conformation and function of aldolase A, because it governs the entry/release of the substrates into/from the enzyme cleft, and/or allows important C-terminal residues to approach the active site.[Abstract] [Full Text] [Related] [New Search]