These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Author: Eriksson C, Björklund A, Wictorin K. Journal: Exp Neurol; 2003 Dec; 184(2):615-35. PubMed ID: 14769354. Abstract: In vitro, expanded neurospheres exhibit multipotent properties and can differentiate into neurons, astrocytes and oligodendrocytes. In vivo, cells from neurospheres derived from mouse fetal forebrain have previously been reported to predominantly differentiate into glial cells, and not into neurons. Here we isolated stem/progenitor cells from E13.5 lateral ganglionic eminence (LGE), medial ganglionic eminence (MGE) and cortical primordium, of a green fluorescent protein (GFP)-actin transgenic mouse. Free-floating neurospheres were expanded in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and implanted after five to six passages into the striatum, hippocampus and cortex of neonatal rats. Cell suspensions of primary LGE tissue were prepared and grafted in parallel. Grafted cells derived from the primary tissue displayed widespread incorporation into all regions, as visualized with the mouse-specific antibody M2, or mouse satellite DNA in situ hybridization, and differentiated into both neurons, astrocytes and oligodendrocytes. Grafts of neurosphere cells derived from the LGE, MGE and cortical primordium differentiated primarily into astrocytes, but contained low but significant numbers of GFP-immunoreactive neurons. Neurons derived from LGE neurospheres were of three types: cells with the morphology of medium-sized densely spiny projection neurons in the striatum; cells with interneuron-like morphologies in striatum, cortex and hippocampus; and cells integrating into SVZ and migrating along the RMS to the olfactory bulb. MGE- or cortical primordium-derived neurospheres differentiated into interneuron-like cells in both striatum and hippocampus. The results demonstrate the ability of in vitro expanded neural stem/progenitor cells to generate both neurons and glia after transplantation into neonatal recipients, and differentiate in a region-specific manner into mature neurons with morphological features characteristic for each target site.[Abstract] [Full Text] [Related] [New Search]