These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase in Saccharomyces cerevisiae.
    Author: Dickinson JR, Dawes IW.
    Journal: J Gen Microbiol; 1992 Oct; 138(10):2029-33. PubMed ID: 1479341.
    Abstract:
    Saccharomyces cerevisiae possesses 2-oxoacid dehydrogenase (EC 1.2.4.4) similar to that found in mammalian cells. The activity is readily detected in cells which have been cultured in a minimal medium containing a branched-chain amino acid. Mutants defective in lipoamide dehydrogenase also lack 2-oxoacid dehydrogenase and are thus unable to catabolize branched-chain amino acids: 2-oxoacids accumulate in the cultures of these cells. The 2-oxoacid dehydrogenase activity is distinct from both 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase, because it could not be detected in assay conditions which permitted the measurement of 2-oxoglutarate dehydrogenase and vice versa. In addition, a strain lacking 2-oxoglutarate dehydrogenase (kgd1::URA3) retained 2-oxoacid dehydrogenase as did a mutant specifically lacking pyruvate dehydrogenase (pda1::Tn5ble). In complex media the specific activity of this enzyme is highest in YEP (yeast extract-peptone)-glycerol and lowest in YEP-acetate and YEP-fructose. 2-Oxoacid dehydrogenase could not be detected in cells which had been transferred to sporulation medium. These results suggest that in S. cerevisiae the catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase, not via the 'Ehrlich Pathway'.
    [Abstract] [Full Text] [Related] [New Search]