These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo.
    Author: Bichell DP, Kikuchi K, Rotwein P.
    Journal: Mol Endocrinol; 1992 Nov; 6(11):1899-908. PubMed ID: 1480177.
    Abstract:
    Many of the growth-promoting properties of GH are mediated by insulin-like growth factor I (IGF-I), a highly conserved circulating 70-amino acid peptide. Recent studies have shown that multiple mechanisms influence IGF-I gene expression, including transcription from two promoters, alternative RNA splicing, and variable polyadenylation. In order to determine how GH regulates IGF-I gene expression we have analyzed the response of hypophysectomized rats to a single ip injection of recombinant GH. A rise in hepatic IGF-I mRNA was detected within 2 h of GH treatment, with peak values of more than 15-fold above untreated animals by 4 h, and a decline by 16 h. A coordinate increase was seen in all IGF-I mRNA splicing and polyadenylation variants, indicating that neither alternative RNA processing nor differential poly A addition were altered by GH. Transcription run-on experiments using isolated hepatic nuclei and direct analysis of nuclear RNA demonstrated a rise in nascent IGF-I mRNA within 30 min of GH treatment, with peak levels reaching more than 10-fold above background by 2 h and declining by 6 h. As determined by RNase protection assays, transcripts directed by each promoter were coordinately and equivalently activated after GH. A single GH-responsive DNase I hypersensitive site was mapped in chromatin to the second IGF-I intron. This site exhibited rapid kinetics of induction which mirrored the pattern of transcriptional stimulation after GH treatment. These experiments show that GH enhances IGF-I expression in vivo by predominantly transcriptional mechanisms. The rapid kinetics of IGF-I gene activation and the temporally associated chromatin changes demonstrate a direct link between a GH-dependent signal transduction pathway and nuclear events.
    [Abstract] [Full Text] [Related] [New Search]