These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microvascular ischemia-reperfusion injury in striated muscle: significance of "no reflow".
    Author: Menger MD, Steiner D, Messmer K.
    Journal: Am J Physiol; 1992 Dec; 263(6 Pt 2):H1892-900. PubMed ID: 1481913.
    Abstract:
    "No reflow" has been implicated as prominent phenomenon in microvascular injury associated with ischemia-reperfusion (I/R). The objectives of this study were 1) to elucidate the significance of no reflow in microvascular I/R injury of striated muscle and 2) to determine whether reactive oxygen metabolites play a role in the development of postischemic no reflow. By use of the hamster dorsal skinfold preparation and intravital microscopy, microvascular perfusion of capillaries and postcapillary venules of striated muscle was quantitatively assessed before and 30 min, 2 h, and 24 h after 4 h of tourniquet-induced ischemia. I/R was characterized by a significant reduction (P < 0.01) in functional capillary density to 35% of baseline values during initial reperfusion, with incomplete recovery after 24 h (n = 9). In addition, capillary perfusion was found to be extremely heterogeneous, and wall shear rate in postcapillary venules was significantly decreased (P < 0.01). Treatment with either superoxide dismutase (SOD; n = 9) or allopurinol (n = 9) resulted in maintenance of capillary density of 60% of baseline (P < 0.05). Furthermore, I/R-induced capillary perfusion inhomogeneities and decrease of wall shear rate in venules were attenuated significantly (P < 0.01) by SOD and allopurinol. Thus part of capillary perfusion disturbances during I/R in striated muscle may be caused by increased postcapillary vascular resistance, probably mediated by reactive oxygen metabolites. However, the fact that in SOD- and allopurinol-treated animals 40% of the capillaries were still found to be nonperfused indicates that mechanisms other than oxygen radicals play an important role in the development of postischemic no reflow.
    [Abstract] [Full Text] [Related] [New Search]