These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reversible shift between two states of Ca2+-ATPase in human erythrocytes mediated by Ca2+ and a membrane-bound activator.
    Author: Scharff O, Foder B.
    Journal: Biochim Biophys Acta; 1978 May 04; 509(1):67-77. PubMed ID: 148293.
    Abstract:
    The (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) from human erythrocytes occurred in two different states, A-state and B-state, depending on the membrane preparation. The A-state showed low maximum activity (V) and the Ca2+ activation was characterized by a Hill coefficient, nH, of about 1 and a Michaelis constant, KCa, about 30 micron. The B-state showed high V, a nH above 1, which indicates positive cooperativity of Ca2+ activation, and KCa of about 1 micron. With varying ATP concentrations, both the A-state and B-state showed negative cooperativity and slightly different values of Km. The B-state was shifted to A-state when the membranes were exposed to low Ca2+ concentration. The shift reached 50% at approx. 0.5 micron Ca2+. At the low Ca2+ concentrations an activator was released from the membranes. The A-state was shifted to the B-state when the membranes were exposed to Ca2+ in the presence of the activator. The shift reached 50% at about 30 micron Ca2+. The recovery of high V was time dependent and lasted several minutes. Increasing concentrations of Ca2+ and activator accelerated the recovery. It is suggested that the A-state and the B-state correspond to enzyme free of activator and enzyme associated with activator, respectively. Furthermore, the two states may respresent a resting and an active state, respectively, of the calcium pump.
    [Abstract] [Full Text] [Related] [New Search]