These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recovery of pulmonary diffusing capacity after maximal exercise.
    Author: Rasmussen J, Hanel B, Saunamaki K, Secher NH.
    Journal: J Sports Sci; 1992 Dec; 10(6):525-31. PubMed ID: 1484398.
    Abstract:
    Pulmonary diffusing capacity (DICO), together with spirometric variables, arterial oxygen tension (paO2) and cardiac output were determined before and at intervals after maximal arm cranking, treadmill running and ergometer rowing. Independent of the type of exercise, D1CO increased immediately post-exercise from a median 13.6 (range 7.3-16.3) to 15.1 (9.3-19.6) mmol min-1 kPa-1 (P < 0.01). However, it decreased to 11.6 (6.9-15.5) mmol min-1 kPa-1 (P < 0.01) after 24 h with cardiac output and paO2 at resting values, and D1CO normalized after 20 h. Thoracic electrical impedance at 2.5 and 100 kHz increased slightly post-exercise, indicating a decrease in thoracic fluid balance, and there were no echocardiographic signs of left ventricular failure at the time of the decrease in D1CO. Also, active muscle (limb) circumference and volume, and an increase in haematocrit from 43.8 (38.0-47.0) to 47.1 (42.7-49.8) (P < 0.01), had normalized at the time of the decrease in D1CO. Vital capacity, forced vital capacity, forced expiratory volume in 1 s, peak and peak mid-expiratory flows did not change. However, total lung capacity increased from 6.8 (5.0-7.6) to 7.0 (5.1-7.8) litres (P < 0.05) immediately after exercise and remained elevated at 6.9 (5.1-8.7) litres (P < 0.05) when a decrease in D1CO was noted. The results demonstrate that independent of the type of maximal exercise, an approximate 15% reduction in D1CO takes place 2-3 h post-exercise, which normalizes during the following day of recovery.
    [Abstract] [Full Text] [Related] [New Search]