These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectroscopic identification of oxonium and carbenium ions of protonated phenol in the gas phase: IR spectra of weakly bound C6H7O+ -L dimers (L = Ne, Ar, N2). Author: Solcà N, Dopfer O. Journal: J Am Chem Soc; 2004 Feb 18; 126(6):1716-25. PubMed ID: 14871102. Abstract: Structural isomers of isolated protonated phenol (C(6)H(7)O(+)) are characterized by infrared (IR) photodissociation spectroscopy of their weakly bound complexes with neutral ligands L (L = Ne, Ar, N(2)). IR spectra of C(6)H(7)O(+)-L recorded in the vicinity of the O-H and C-H stretch fundamentals carry unambiguous signatures of at least two C(6)H(7)O(+) isomers: the identified protonation sites of phenol include the O atom (oxonium ion, O-C(6)H(7)O(+)) and the C atoms of the aromatic ring in the ortho and/or para position (carbenium ions, o/p-C(6)H(7)O(+)). In contrast, protonation at the meta and ipso positions is not observed. The most stable C(6)H(7)O(+)-L dimer structures feature intermolecular H-bonds between L and the OH groups of O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). Extrapolation to zero solvation interaction yields reliable experimental vibrational frequencies of bare O-C(6)H(7)O(+) and o/p-C(6)H(7)O(+). The interpretation of the C(6)H(7)O(+)-L spectra, as well as the extrapolated monomer frequencies, is supported by B3LYP and MP2 calculations using the 6-311G(2df,2pd) basis. The spectroscopic and theoretical results elucidate the effect of protonation on the structural properties of phenol and provide a sensitive probe of the activating and ortho/para directing nature of the OH group observed in electrophilic aromatic substitution reactions.[Abstract] [Full Text] [Related] [New Search]