These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alkylsulfonates activate the uncoupling protein UCP1: implications for the transport mechanism. Author: Rial E, Aguirregoitia E, Jiménez-Jiménez J, Ledesma A. Journal: Biochim Biophys Acta; 2004 Feb 15; 1608(2-3):122-30. PubMed ID: 14871489. Abstract: Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.[Abstract] [Full Text] [Related] [New Search]