These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Separate effects of ischemia and reperfusion on vascular permeability in ventilated ferret lungs. Author: Becker PM, Pearse DB, Permutt S, Sylvester JT. Journal: J Appl Physiol (1985); 1992 Dec; 73(6):2616-22. PubMed ID: 1490978. Abstract: In systemic organs, ischemia-reperfusion injury is thought to occur during reperfusion, when oxygen is reintroduced to hypoxic ischemic tissue. In contrast, the ventilated lung may be more susceptible to injury during ischemia, before reperfusion, because oxygen tension will be high during ischemia and decrease with reperfusion. To evaluate this possibility, we compared the effects of hyperoxic ischemia alone and hyperoxic ischemia with normoxic reperfusion on vascular permeability in isolated ferret lungs. Permeability was estimated by measurement of filtration coefficient (Kf) and osmotic reflection coefficient for albumin (sigma alb), using methods that did not require reperfusion to make these measurements. Kf and sigma alb in control lungs (n = 5), which were ventilated with 14% O2-5% CO2 after minimal (15 +/- 1 min) ischemia, averaged 0.033 +/- 0.004 g.min-1.mmHg-1.100 g-1 and 0.69 +/- 0.07, respectively. These values did not differ from those reported in normal in vivo lungs of other species. The effects of short (54 +/- 9 min, n = 10) and long (180 min, n = 7) ischemia were evaluated in lungs ventilated with 95% O2-5% CO2. Kf and sigma alb did not change after short ischemia (Kf = 0.051 +/- 0.006 g.min-1.mmHg-1.100 g-1, sigma alb = 0.69 +/- 0.07) but increased significantly after long ischemia (Kf = 0.233 +/- 0.049 g.min-1 x mmHg-1 x 100 g-1, sigma alb = 0.36 +/- 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]