These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Decreased arachidonate metabolism in mouse peritoneal macrophages after foam cell transformation with oxidized low-density lipoproteins.
    Author: Arai H, Nagano Y, Narumiya S, Kita T.
    Journal: J Biochem; 1992 Oct; 112(4):482-7. PubMed ID: 1491002.
    Abstract:
    Oxidized low density lipoproteins (LDL) are now considered to be one of the atherogenic lipoproteins in vivo and to play an important role in the pathogenesis of atherosclerosis. We previously demonstrated in mouse peritoneal macrophages that oxidized LDL stimulated prostaglandin (PG) E2 synthesis when incorporated into the cells [Yokode, M. et al. (1988) J. Clin. Invest. 81, 720-729]. In this study, we investigated arachidonate metabolism in macrophages after foam cell transformation. The cells were incubated with 100 micrograms/ml of oxidized LDL for 18 h, then stimulated with zymosan. Lipid-enriched macrophages which had taken up oxidized LDL produced much less eicosanoids, such as PGE2, 6-keto-PGF1 alpha, and leukotriene C4 than control cells. After labeling of the cells with [14C]arachidonic acid, they were stimulated with zymosan and the phospholipase activity was determined. The activity of lipid-enriched cells was about two-thirds of that of control cells. Then we investigated the fatty acid composition of their phospholipid fraction to clarify arachidonic acid content and mobilization. Percent of arachidonic acid of lipid-enriched cells decreased and less arachidonic acid mobilization was observed after stimulation with zymosan. These data suggest that impaired arachidonate metabolism in lipid-enriched macrophages can be explained by their decreased phospholipase activity and changes in their fatty acid composition.
    [Abstract] [Full Text] [Related] [New Search]