These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Muscle actin cleaved by proteinase K: its polymerization and in vitro motility.
    Author: Higashi-Fujime S, Suzuki M, Titani K, Hozumi T.
    Journal: J Biochem; 1992 Oct; 112(4):568-72. PubMed ID: 1491013.
    Abstract:
    Skeletal muscle actin was lightly digested by proteinase K, which cleaved the peptide bond between Met-47 and Gly-48, producing a C-terminal 35 kDa fragment. Proteinase K-cleaved actin (proK-actin) did not polymerize into F-actin upon addition of salt. In the presence of phalloidin, however, it polymerized slowly into F-actin (proK-F-actin), indicating that the cleaved actin did not dissociate into the individual cleaved fragments but retained the global structure of actin. Electron microscopy showed that proK-F-actin had the typical double-stranded structure of a normal actin filament and formed the arrowhead structure when decorated with HMM. Heavy meromyosin ATPase was weakly activated by proK-F-actin: Vmax = 0.24 s-1, and Kapp = 2.8 microM, while Vmax = 7.6 s-1, and Kapp = 13 microM by F-actin. Correspondingly, in vitro this proK-F-actin slid very slowly on HMM attached to a glass surface at an average velocity of 0.47 microns/s, or 1/12 of that of intact F-actin. The fraction of sliding filaments was less than 50%. Assuming that the nonmotile filaments attached to HMM were not involved in ATPase activation, the sliding velocity correlated with the ATPase activity activated by proK-F-actin.
    [Abstract] [Full Text] [Related] [New Search]